If #u_n = int (sin nx)/sinx dx, >= 2#, prove that #u_n = (2sin(n-1)x)/(n-1)+u_(n-2)# Hence evaluate: #int_0^(pi/2) (sin5x)/ sinx dx#?

Answer 1

#pi/2#

Calling #u_n = int sin(n x)/sinx dx# we have
#u_n-u_(n-2) = int(sin(n x)/sinx-sin((n-2) x)/sinx)dx = int 2 cos((n-1)x)dx=(2sin((n-1)x))/((n-1))#

Here we used

#sin(a+b)-sin(a-b)=2cos(a)sin(b)#

with

#a+b=nx# and #a-b=(n-2)x#

and now

#u_5 = (2sin(4x))/4+u_3# #u_3 = (2sin(2x))/2+u_1#

so

#u_5=[(2sin(4x))/4+ (2sin(2x))/2+x]_0^(pi/2) = pi/2#
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 2

Proof is given in the Explanation.

# int_0^(pi/2) sin(5x)/sinxdx=pi/2.#

In what follows, #n in {2,3,4,...}=NN-{1}.#
#u_n=intsin(nx)/sinxdx rArr u_(n-2)=int{sin(n-2)x}/sinxdx.#
#:. u_n-u_(n-2)=int[sin(nx)/sinx-{sin(n-2)x}/sinx]dx,#
#=int{sin(nx)-sin(nx-2x)}/sinxdx,#
#=int{2cos((nx+nx-2x)/2)*sin((nx-nx+2x)/2)}/sinx dx,#
#=2int{(cos(2nx-2x)/2)*sin(2x/2)}/sinx dx,#
#=2intcos((n-1)x)dx,#
#rArr u_n=(2sin(n-1)x)/(n-1)+u_(n-2)+C, nge2, ninNN...(star).#

Hence, the Proof.

Using #(star)# with #n=5,# we have,
#u_5=(2sin(4x))/4+u_3....(1)#
#u_3=(2sin(2x))/2+u_1....(2)#
And, finally, without #(star), u_1=intsinx/sinxdx=intdx=x...(3).#
#(1),(2),&(3) rArr u_5=1/2sin4x+sin2x+x+c.#
#:. int_0^(pi/2) sin(5x)/sinxdx=[u_5]_0^(pi/2]#
#=[1/2sin4x+sin2x+x]_0^(pi/2)#
#=[1/2sin2pi+sinpi+pi/2]-(0)#
#=pi/2.#

Enjoy Maths.!

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 3

For the #2^(nd)# Proof, refer to the Explanation.

Here is a Second Method to prove the Result for

#n>=2, n in NN.#
#u_n=intsin(nx)/sinxdx.#
Now, #sin(nx)/sinx=1/sinx{sin((nx-2x)+2x)}#
Knowing that, #sin(A+B)=sinAcosB+cosAsinB,# we get,
#sin(nx)/sinx=1/sinx{sin(nx-2x)cos2x+cos(nx-2x)sin2x}#
#=1/sinx{(sin((n-2)x))(1-2sin^2x)+(cos((n-2)x))(2sinxcosx)}#
#=1/sinx{sin((n-2)x)-2sin^2xsin((n-2)x)+2sinxcosxcos((n-2)x)}#
#=sin((n-2)x)/sinx-2sinxsin((n-2)x)+2cosxcos((n-2)x)#
#=sin((n-2)x)/sinx+2{cosxcos((n-2)x)-sinxsin((n-2)x)}#
#=sin((n-2)x)/sinx+2{cos((n-2)x+x)}#
#:. sin(nx)/sinx=sin((n-2)x)/sinx+2cos((n-1)x).#
#rArr u_n=intsin(nx)/sinxdx=int{sin((n-2)x)/sinx+2cos((n-1)x)}dx#
#=intsin((n-2)x)/sinxdx+2intcos((n-1)x)dx.#
#"Hence, "u_n=u_(n-2)+(2sin((n-1)x))/(n-1)+C; n in NN, n>=2.#

Rest of the Soln. is the same as in the First Method.

Enjoy Maths.!

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 4

#pi/2.#

Without the use of the given Recurrence Relation,

#I=int_0^(pi/2)sin(5x)/sinxdx# can be proved as shown below:

A Result :

#int_0^af(x)dx=int_0^af(a-x)dx; a>0, f :[0,a] to RR" is cont."#
We have, #I=int_0^(pi/2)sin(5x)/sinx dx............(1).#

Using the above Result,

#I=int_0^(pi/2) sin(5(pi/2-x))/{sin(pi/2-x)}dx,#
#=int_0^(pi/2) sin(5pi/2-5x)/cosxdx,#
#:. I=int_0^(pi/2) cos(5x)/cosxdx.......................(2).#
Adding #(1) and(2)#, we get,
#I+I=2I=int_0^(pi/2){sin(5x)/sinx+cos(5x)/cosx}dx,#
#=int_0^(pi/2){sin(5x)cosx+sinxcos(5x)}/(sinxcosx)dx, i.e.,#
#2I=2int_0^(pi/2){sin(5x+x)}/(2sinxcosx)dx,#
#:. I=int_0^(pi/2) sin(6x)/sin(2x)dx,#
Since, #sin6x=sin(3(2x))=3sin(2x)-4sin^3(2x)={3-4sin^2(2x)}sin(2x),#
we get, #I=int_0^(pi/2){3-4sin^2(2x)}dx,#
#=int_0^(pi/2) {3-2(1-cos4x)}dx,#
#=int_0^(pi/2)(1+2cos4x)dx,#
#=[x+2(sin(4x)/4)]_0^(pi/2),#
#=[x+1/2sin4x]_0^(pi/2),#
#={pi/2+1/2sin2pi}-{0+1/2sin0],#
#rArr I=pi/2.#

Enjoy Maths.!

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 5

To prove ( u_n = \frac{2 \sin((n-1)x)}{n-1} + u_{n-2} ) for ( n \geq 2 ), we'll use mathematical induction.

Base Case: ( n = 2 ) For ( n = 2 ), we have: ( u_2 = \int \frac{\sin(2x)}{\sin(x)} , dx ) By trigonometric identity, ( \sin(2x) = 2\sin(x)\cos(x) ), so: ( u_2 = \int \frac{2\sin(x)\cos(x)}{\sin(x)} , dx = 2\int \cos(x) , dx = 2\sin(x) + C ) This matches the form ( \frac{2\sin((2-1)x)}{2-1} + u_{2-2} ), thus the base case holds.

Inductive Step: Assume ( u_k = \frac{2\sin((k-1)x)}{k-1} + u_{k-2} ) for some ( k \geq 2 ). We want to prove ( u_{k+1} = \frac{2\sin(kx)}{k} + u_{k-1} ).

Consider: ( u_{k+1} = \int \frac{\sin((k+1)x)}{\sin(x)} , dx ) Using the angle addition formula for sine, ( \sin((k+1)x) = \sin(kx)\cos(x) + \cos(kx)\sin(x) ), we get: ( u_{k+1} = \int \frac{\sin(kx)\cos(x) + \cos(kx)\sin(x)}{\sin(x)} , dx ) ( = \int \cos(kx) , dx + \int \frac{\sin(kx)}{\sin(x)} , dx ) The first integral is ( \frac{\sin(kx)}{k} + C_1 ) and by our assumption, the second integral is ( u_k = \frac{2\sin((k-1)x)}{k-1} + u_{k-2} ).

Thus: ( u_{k+1} = \frac{\sin(kx)}{k} + \frac{2\sin((k-1)x)}{k-1} + u_{k-2} ) Rearranging terms, we have: ( u_{k+1} = \frac{2\sin(kx)}{k} + u_{k-1} )

This completes the inductive step.

Now, to evaluate ( \int_0^{\frac{\pi}{2}} \frac{\sin(5x)}{\sin(x)} , dx ), we notice that ( n = 5 ) in the given formula. Using the formula derived above for ( u_5 ): ( u_5 = \frac{2\sin(4x)}{4} + u_3 )

Now ( u_3 ) can be derived similarly using the formula. Continuing this process until we get to ( u_1 ) which is trivially ( \int \frac{\sin(x)}{\sin(x)} , dx = x ):

( u_5 = \frac{2\sin(4x)}{4} + u_3 ) ( = \frac{2\sin(4x)}{4} + \frac{2\sin(2x)}{2} + u_1 ) ( = \frac{2\sin(4x)}{4} + \frac{2\sin(2x)}{2} + x )

Finally, integrate this expression from ( 0 ) to ( \frac{\pi}{2} ) to get the result.

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer from HIX Tutor

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

Not the question you need?

Drag image here or click to upload

Or press Ctrl + V to paste
Answer Background
HIX Tutor
Solve ANY homework problem with a smart AI
  • 98% accuracy study help
  • Covers math, physics, chemistry, biology, and more
  • Step-by-step, in-depth guides
  • Readily available 24/7