How do you integrate #int sqrt(7+5x^2)/x# using trig substitutions?

Answer 1
#I=intsqrt(7+5x^2)/xdx#
We will use the substitution #sqrt5x=sqrt7tantheta#. Differentiating this shows that #sqrt5dx=sqrt7sec^2thetad theta#. Then:
#I=1/sqrt5intsqrt(7+(sqrt5x)^2)/xsqrt5dx#
Substituting in what we know (recall that #x=sqrt7/sqrt5tantheta#):
#I=1/sqrt5intsqrt(7+(sqrt7tantheta)^2)/(sqrt7/sqrt5tantheta)sqrt7sec^2thetad theta#

Clearing up the square root, and moving around the constants:

#I=1/sqrt5sqrt5/sqrt7sqrt7intsqrt(7+7tan^2theta)/tanthetasec^2thetad theta#
All the constants outside the integral cancel. We can factor #sqrt7# from the square root:
#I=int(sqrt7sqrt(1+tan^2theta))/tanthetasec^2thetad theta#
Since #1+tan^2theta=sec^2theta#:
#I=sqrt7intsqrt(sec^2theta)/tanthetasec^2thetad theta=sqrt7intsec^3theta/tanthetad theta#
Writing as #sintheta# and #costheta#:
#I=sqrt7int1/cos^3thetacostheta/sinthetad theta=sqrt7int1/cos^2theta1/sinthetad theta=sqrt7intsec^2theta/sinthetad theta#

Rewriting (again)!

#I=sqrt7int(tan^2theta+1)/sinthetad theta=sqrt7int(tan^2theta/sintheta+1/sintheta)d theta#

Rearranging...

#I=sqrt7int(sin^2theta/cos^2theta1/sintheta+csctheta)d theta#
#I=sqrt7intsintheta/costheta1/costhetad theta+sqrt7intcscthetad theta#
#I=sqrt7inttanthetasecthetad theta+sqrt7intcscthetad theta#

These are common integrals:

#I=sqrt7sectheta-sqrt7lnabs(csctheta+cottheta)+C#
We started with the substitution #sqrt5x=sqrt7tantheta#. This implies that #tantheta=(sqrt5x)/sqrt7#. In a right triangle, this means we have an opposite side of #sqrt5x# and an adjacent side of #sqrt7#. Through the Pythagorean theorem, we see that the hypotenuse is #sqrt(7+5x^2)#.

Using our definitions of the trigonometric functions, we see that:

Then:

#I=sqrt7sqrt(7+5x^2)/sqrt7-sqrt7lnabs(sqrt(7+5x^2)/(sqrt5x)+sqrt7/(sqrt5x))+C#
#I=sqrt(7+5x^2)-sqrt7lnabs((sqrt(7+5x^2)+sqrt7)/(sqrt5x))+C#
Note that #1/sqrt5# can be pulled out of the logarithm through the rule #log(a/b)=log(a)-log(b)#. It will be absorbed into the constant of integration, so this is most simply written:
#I=sqrt(7+5x^2)-sqrt7lnabs((sqrt(7+5x^2)+sqrt7)/x)+C#
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 2

To integrate ( \frac{\sqrt{7 + 5x^2}}{x} ) using trigonometric substitution, we can let ( x = \sqrt{\frac{7}{5}} \tan(\theta) ). Then, ( dx = \sqrt{\frac{7}{5}} \sec^2(\theta) d\theta ). Substituting these into the integral, we get:

[ \int \frac{\sqrt{7 + 5x^2}}{x} dx = \int \frac{\sqrt{7 + 5\left(\sqrt{\frac{7}{5}} \tan(\theta)\right)^2}}{\sqrt{\frac{7}{5}} \tan(\theta)} \sqrt{\frac{7}{5}} \sec^2(\theta) d\theta ]

[ = \int \frac{\sqrt{7 + 5\frac{7}{5}\tan^2(\theta)}}{\tan(\theta)} \sqrt{\frac{7}{5}} \sec^2(\theta) d\theta ]

[ = \int \frac{\sqrt{7(1 + \tan^2(\theta))}}{\tan(\theta)} \sqrt{\frac{7}{5}} \sec^2(\theta) d\theta ]

[ = \int \frac{\sqrt{7 \sec^2(\theta)}}{\tan(\theta)} \sqrt{\frac{7}{5}} \sec^2(\theta) d\theta ]

[ = \int \frac{\sqrt{7} \sec(\theta)}{\tan(\theta)} \sqrt{\frac{7}{5}} \sec^2(\theta) d\theta ]

[ = \int \sqrt{\frac{7}{5}} \frac{\sqrt{7} \sec(\theta)}{\sin(\theta)} \sec^2(\theta) d\theta ]

[ = \int \sqrt{\frac{7}{5}} \frac{\sqrt{7} \sec^3(\theta)}{\sin(\theta)} d\theta ]

[ = \int \sqrt{\frac{7}{5}} \frac{\sqrt{7} \sec(\theta) \sec^2(\theta)}{\sin(\theta)} d\theta ]

[ = \int \sqrt{\frac{7}{5}} \frac{\sqrt{7} \sec(\theta) \sec(\theta) \tan(\theta)}{\sin(\theta)} d\theta ]

[ = \int \sqrt{\frac{7}{5}} \frac{7 \tan(\theta)}{\sin(\theta)} d\theta ]

[ = \int \sqrt{\frac{7}{5}} \frac{7}{\cos(\theta)} d\theta ]

[ = \int \frac{7\sqrt{7}}{\sqrt{5} \cos(\theta)} d\theta ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \int \frac{1}{\cos(\theta)} d\theta ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \int \sec(\theta) d\theta ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|\sec(\theta) + \tan(\theta)| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|\sqrt{\frac{7}{5}} \tan(\theta) + \tan(\theta)| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|\tan(\theta)\left(1 + \sqrt{\frac{7}{5}}\right)| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln\left|\tan(\theta) + \sqrt{\frac{7}{5}}\tan(\theta)\right| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|\sqrt{\frac{7}{5}}x + x| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|x(\sqrt{\frac{7}{5}} + 1)| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|x\sqrt{\frac{7}{5}}(1 + \frac{\sqrt{5}}{\sqrt{5}})| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|x\sqrt{\frac{7}{5}}(1 + \frac{\sqrt{5}}{\sqrt{5}})| + C ]

[ = \frac{7\sqrt{7}}{\sqrt{5}} \ln|x\sqrt{\frac{7}{5}}(1 + \sqrt{5})| + C ]

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer from HIX Tutor

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

Not the question you need?

Drag image here or click to upload

Or press Ctrl + V to paste
Answer Background
HIX Tutor
Solve ANY homework problem with a smart AI
  • 98% accuracy study help
  • Covers math, physics, chemistry, biology, and more
  • Step-by-step, in-depth guides
  • Readily available 24/7