How do you integrate #int ln(e^(2x-1))dx#?
Apply your knowledge of logarithms.
Apply the rule of reverse power:
By signing up, you agree to our Terms of Service and Privacy Policy
To integrateTo integrate (To integrate ( \To integrate (\To integrate ( \intTo integrate (\intTo integrate ( \int \To integrate (\int \To integrate ( \int \lnTo integrate (\int \lnTo integrate ( \int \ln(eTo integrate (\int \ln(eTo integrate ( \int \ln(e^{To integrate (\int \ln(e^{To integrate ( \int \ln(e^{2To integrate (\int \ln(e^{2To integrate ( \int \ln(e^{2xTo integrate (\int \ln(e^{2xTo integrate ( \int \ln(e^{2x-To integrate (\int \ln(e^{2x-1To integrate ( \int \ln(e^{2x-1})To integrate (\int \ln(e^{2x-1})To integrate ( \int \ln(e^{2x-1}) \To integrate (\int \ln(e^{2x-1}) \To integrate ( \int \ln(e^{2x-1}) ,To integrate (\int \ln(e^{2x-1}) ,To integrate ( \int \ln(e^{2x-1}) , dxTo integrate (\int \ln(e^{2x-1}) , dx),To integrate ( \int \ln(e^{2x-1}) , dx ), weTo integrate (\int \ln(e^{2x-1}) , dx), weTo integrate ( \int \ln(e^{2x-1}) , dx ), we canTo integrate (\int \ln(e^{2x-1}) , dx), we canTo integrate ( \int \ln(e^{2x-1}) , dx ), we can useTo integrate (\int \ln(e^{2x-1}) , dx), we can useTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use theTo integrate (\int \ln(e^{2x-1}) , dx), we can use theTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the propertiesTo integrate (\int \ln(e^{2x-1}) , dx), we can use the propertyTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property ofTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithmsTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms thatTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\lnTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponentialTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(eTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functionsTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions.To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^uTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. FirstTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u)To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, weTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = uTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplifyTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u).To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expressionTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). SoTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression insideTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we haveTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithmTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm usingTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the propertyTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \lnTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(eTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^aTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a)To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) =To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = aTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1})To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). ThisTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This givesTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives usTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \lnTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(eTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1)To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) =To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, weTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we canTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrateTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). NowTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrateTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1))To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) withTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect toTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 )To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) withTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respectTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect toTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1)To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). TheTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ),To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), andTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx -To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 )To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). ThereforeTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 -To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x +To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + CTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
SoTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 )To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \lnTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(eTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1})To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). HenceTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respectTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) , dx =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) , dx = xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{2x-1}) , dx = x^2 - x + C ), whereTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) , dx = x^To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{2x-1}) , dx = x^2 - x + C ), where ( C ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) , dx = x^2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{2x-1}) , dx = x^2 - x + C ), where ( C ) is the constant of integration.To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:
[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]
Now, we can integrate ((2x-1)) with respect to (x):
[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]
[ = x^2 - x + C ]
So, (\int \ln(e^{2x-1}) , dx = x^2 - x + C), where (C) is the constant of integration.
By signing up, you agree to our Terms of Service and Privacy Policy
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
- How do you integrate #(tanx)^4 #?
- What is #int (x^2-5x+4 ) / (x^3-2x +4 )#?
- How do you use the summation formulas to rewrite the expression #Sigma (4j+3)/n^2# as j=1 to n without the summation notation and then use the result to find the sum for n=10, 100, 1000, and 10000?
- What is #int tan^2(2x) sec^4(2x) dx#?
- How do you evaluate the definite integral #int (dx/(xsqrt(lnx)))# from #[1, e^6]#?

- 98% accuracy study help
- Covers math, physics, chemistry, biology, and more
- Step-by-step, in-depth guides
- Readily available 24/7