How do you integrate #int ln(e^(2x-1))dx#?

Answer 1

# x^2 - x +c #

Apply your knowledge of logarithms.

# log_a a^f(x) -= f(x) ln_a a -= f(x) #
Hence #ln e^f(x) -= f(x) #
#=> int ln (e^(2x-1) ) dx = int (2x-1) dx#

Apply the rule of reverse power:

# = x^2 -x + c #
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 2

To integrateTo integrate (To integrate ( \To integrate (\To integrate ( \intTo integrate (\intTo integrate ( \int \To integrate (\int \To integrate ( \int \lnTo integrate (\int \lnTo integrate ( \int \ln(eTo integrate (\int \ln(eTo integrate ( \int \ln(e^{To integrate (\int \ln(e^{To integrate ( \int \ln(e^{2To integrate (\int \ln(e^{2To integrate ( \int \ln(e^{2xTo integrate (\int \ln(e^{2xTo integrate ( \int \ln(e^{2x-To integrate (\int \ln(e^{2x-1To integrate ( \int \ln(e^{2x-1})To integrate (\int \ln(e^{2x-1})To integrate ( \int \ln(e^{2x-1}) \To integrate (\int \ln(e^{2x-1}) \To integrate ( \int \ln(e^{2x-1}) ,To integrate (\int \ln(e^{2x-1}) ,To integrate ( \int \ln(e^{2x-1}) , dxTo integrate (\int \ln(e^{2x-1}) , dx),To integrate ( \int \ln(e^{2x-1}) , dx ), weTo integrate (\int \ln(e^{2x-1}) , dx), weTo integrate ( \int \ln(e^{2x-1}) , dx ), we canTo integrate (\int \ln(e^{2x-1}) , dx), we canTo integrate ( \int \ln(e^{2x-1}) , dx ), we can useTo integrate (\int \ln(e^{2x-1}) , dx), we can useTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use theTo integrate (\int \ln(e^{2x-1}) , dx), we can use theTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the propertiesTo integrate (\int \ln(e^{2x-1}) , dx), we can use the propertyTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property ofTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithmsTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms thatTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\lnTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponentialTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(eTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functionsTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions.To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^uTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. FirstTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u)To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, weTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = uTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplifyTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u).To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expressionTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). SoTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression insideTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we haveTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithmTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm usingTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the propertyTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \lnTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(eTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^aTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a)To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) =To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = aTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1})To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). ThisTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This givesTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives usTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \lnTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(eTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1)To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) =To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, weTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we canTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrateTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). NowTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrateTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1))To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) withTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect toTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 )To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) withTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respectTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect toTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1)To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). TheTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ),To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), andTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx -To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 )To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). ThereforeTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 -To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integralTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral ofTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x +To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + CTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

SoTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 )To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\intTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is (To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \lnTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(eTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 -To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - xTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x \To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ).To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1})To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). HenceTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) \To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence,To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) ,To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, theTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) , dxTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respectTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) , dx =To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) , dx = xTo integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{2x-1}) , dx = x^2 - x + C ), whereTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) , dx = x^To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{2x-1}) , dx = x^2 - x + C ), where ( C ) isTo integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) , dx = x^2To integrate ( \int \ln(e^{2x-1}) , dx ), we can use the properties of logarithms and the integral of exponential functions. First, we simplify the expression inside the logarithm using the property ( \ln(e^a) = a ). This gives us ( \ln(e^{2x-1}) = 2x - 1 ). Now, we integrate ( 2x - 1 ) with respect to ( x ). The integral of ( 2x ) is ( x^2 ), and the integral of ( -1 ) is ( -x ). Therefore, the integral of ( 2x - 1 ) is ( x^2 - x ). Hence, the integral of ( \ln(e^{2x-1}) ) with respect to ( x ) is ( \int \ln(e^{2x-1}) , dx = x^2 - x + C ), where ( C ) is the constant of integration.To integrate (\int \ln(e^{2x-1}) , dx), we can use the property of logarithms that (\ln(e^u) = u). So, we have:

[ \int \ln(e^{2x-1}) , dx = \int (2x-1) , dx ]

Now, we can integrate ((2x-1)) with respect to (x):

[ \int (2x-1) , dx = \int 2x , dx - \int 1 , dx ]

[ = x^2 - x + C ]

So, (\int \ln(e^{2x-1}) , dx = x^2 - x + C), where (C) is the constant of integration.

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer from HIX Tutor

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

Not the question you need?

Drag image here or click to upload

Or press Ctrl + V to paste
Answer Background
HIX Tutor
Solve ANY homework problem with a smart AI
  • 98% accuracy study help
  • Covers math, physics, chemistry, biology, and more
  • Step-by-step, in-depth guides
  • Readily available 24/7