How do you integrate #int 1/sqrt(-e^(2x)+12e^x+72)dx# using trigonometric substitution?

Answer 1

#1/{6\sqrt2}\ln|\frac{e^x(\sqrt3-\sqrt2)-\sqrt{-e^{2x}+12e^x+72}+6\sqrt2}{e^x(\sqrt3+\sqrt2)-\sqrt{-e^{2x}+12e^x+72}-6\sqrt2}|+C#

Given that

#\int \frac{1}{\sqrt{-e^{2x}+12e^x+72}}\ dx#
#=\int \frac{1}{\sqrt{108-((e^{x})^2-2(6)e^x+6^2)}}\ dx#
#=\int \frac{1}{\sqrt{108-(e^x-6)^2}}\ dx#
Let #e^x-6=6\sqrt3\sin \theta\implies e^x\ dx=6\sqrt3\cos\theta\ d\theta#
#\implies dx=\frac{6\sqrt3\cos\theta\ d\theta}{6\sqrt3\sin\theta+6}#
#\therefore \int \frac{dx}{\sqrt{108-(e^x-6)^2}}#
#=\int \frac{\frac{6\sqrt3\cos\theta\ d\theta}{6\sqrt3\sin\theta+6}}{\sqrt{108-108\sin^2\theta}}#
#=\int \frac{6\sqrt3\cos\theta\ d\theta}{6\sqrt3cos\theta(6\sqrt3\sin\theta+6)}#
#=\int \frac{ d\theta}{6\sqrt3\sin\theta+6}#
#=\int \frac{ d\theta}{6\sqrt3(\frac{2\tan(\theta/2)}{1+\tan^2(\theta/2)})+6}#
#=\int \frac{ (1+\tan^2(\theta/2))d\theta}{12\sqrt3\tan(\theta/2)+6(1+\tan^2(\theta/2))}#
#=1/{6}\int \frac{ sec^2(\theta/2)d\theta}{\tan^2(\theta/2)+2\sqrt3\ \tan(\theta/2)+1}#
#=1/{3}\int \frac{ 1/2sec^2(\theta/2)d\theta}{(\tan(\theta/2)+\sqrt3)^2-2}#
#=1/{3}\int \frac{ d(\tan(\theta/2)+\sqrt3)}{(\tan(\theta/2)+\sqrt3)^2-(\sqrt2)^2}#
Using standard formula: #\int \frac{dt}{t^2-a^2}=1/{2a}\ln|\frac{t-a}{t+a}|#
#=1/{3}\frac{1}{2\sqrt2}\ln|\frac{\tan(\theta/2)+\sqrt3-\sqrt2}{\tan(\theta/2)+\sqrt3+\sqrt2}|+C#
#=1/{6\sqrt2}\ln|\frac{\frac{6\sqrt3-\sqrt{-e^{2x}+12e^x+72}}{e^x-6}+\sqrt3-\sqrt2}{\frac{6\sqrt3-\sqrt{-e^{2x}+12e^x+72}}{e^x-6}+\sqrt3+\sqrt2}|+C#
#=1/{6\sqrt2}\ln|\frac{e^x(\sqrt3-\sqrt2)-\sqrt{-e^{2x}+12e^x+72}+6\sqrt2}{e^x(\sqrt3+\sqrt2)-\sqrt{-e^{2x}+12e^x+72}-6\sqrt2}|+C#
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 2

#I#=#1/(6sqrt2)ln|(6sqrt3-sqrt(-e^(2x)+12x+72)+(sqrt3-sqrt2)(e^x-6))/(6sqrt3-sqrt(-e^(2x)+12x+72)+(sqrt3+sqrt2)(e^x-6))|##+c#

Here,

#I=int1/sqrt(-e^(2x)+12e^x+72)dx#

Now,

#-e^(2x)+12e^x+72=color(brown)(108)-e^(2x)+12e^x- color(brown)(36)=108-(e^x-6)^2#

#:.I=int 1/sqrt(108-(e^x-6)^2)dx#

Substitute ,#color(red)(e^x-6=sqrt108sinu)=>e^x=sqrt108 sinu+6#

#=>e^xdx#=#sqrt108cosudu=>dx=(sqrt108sinu)/(e^x)#=# (sqrt108cosu)/(sqrt108sinu+6)#

So. #I=int1/sqrt(108-108sin^2u)* (sqrt108cosu)/(sqrt108sinu+6)du#

#I=int1/(sqrt108cosu) xx (sqrt108cosu)/(sqrt108sinu+6)du#
#=int1/(sqrt108sinu+6)du#
#=1/6int1/(sqrt3sinu+1)du#
Substitute , #color(blue)(tan(u/2)=t)=>sec^2(u/2)1/2du=dt#
#=>du=(2dt)/(1+tan^2(u/2))=>color(blue)(du=(2dt)/(1+t^2)) and #
#sinu=(2tan(u/2))/(1+tan^2(u/2))=>color(blue)(sinu=(2t)/(1+t^2)#
So , #I=1/6int1/(sqrt3((2t)/(1+t^2))+1)*(2dt)/(1+t^2)#
#=>I=2/6int1/(2sqrt3t+1+t^2)dt#
#=>I=2/6int1/(t^2+2sqrt3t+3-2)dt to#[completing square]
#=>I=1/3int1/((t+sqrt3)^2-(sqrt2)^2)dt#

#=>I=1/3*1/(2sqrt2)int [((t+sqrt3+sqrt2)-(t+sqrt3- sqrt2))/((t+sqrt3+sqrt2)(t+sqrt3-sqrt2))]dt#

#=1/(6sqrt2)int[1/(t+sqrt3-sqrt2)-1/(t+sqrt3+sqrt2)]dt#
#=1/(6sqrt2)[ln|t+sqrt3-sqrt2|-ln|t+sqrt3+sqrt2|]+c#
#:.I=1/(6sqrt2){ln|(t+sqrt3-sqrt2)/(t+sqrt3+sqrt2)|}+c...to(1)#
Now, #color(blue)(t=tan(u/2)#

#=>t^2=tan^2(u/2)=(1-cosu)/(1+cosu)=(1-cosu)/(1+cosu) xxcolor(green)((1-cosu)/(1-cosu))#

#=>t^2=(1-cosu)^2/(1-cos^2u)=(1-cosu)^2/sin^2u#
#=>t=(1-cosu)/sinu=(1-sqrt(1-sin^2u))/sinu#
Subst. back #sinu=(e^x-6)/sqrt108#
#t=(1-sqrt(1-((e^x-6)/sqrt108)^2))/((e^x-6)/sqrt108)=>color(violet)(t=(sqrt108-sqrt(108-(e^x-6)^2))/(e^x-6))#
#:. t=(6sqrt3-sqrt(-e^(2x)+12x+72))/(e^x-6)#
Hence ,from #(1)#
#I=1/(6sqrt2){ln|(color(violet)((6sqrt3-sqrt(-e^(2x)+12x+72))/(e^x-6))+sqrt3-sqrt2)/(color(violet)((6sqrt3-sqrt(-e^(2x)+12x+72))/(e^x-6))+sqrt3+sqrt2)|}+c#
#I#=#1/(6sqrt2)ln|(6sqrt3-sqrt(-e^(2x)+12x+72)+(sqrt3-sqrt2)(e^x-6))/(6sqrt3-sqrt(-e^(2x)+12x+72)+(sqrt3+sqrt2)(e^x-6))|##+c#
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 3

To integrate (\int \frac{1}{\sqrt{-e^{2x} + 12e^x + 72}} , dx) using trigonometric substitution:

  1. Rewrite the expression under the square root as a perfect square.
  2. Choose a suitable trigonometric substitution such that the expression simplifies.
  3. Replace (x) with the chosen trigonometric function.
  4. Differentiate to find (dx) in terms of the trigonometric function.
  5. Rewrite the integral in terms of the trigonometric function and (dx).
  6. Integrate the expression.
  7. Replace the trigonometric function with (x) to obtain the final result.
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer from HIX Tutor

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

Not the question you need?

Drag image here or click to upload

Or press Ctrl + V to paste
Answer Background
HIX Tutor
Solve ANY homework problem with a smart AI
  • 98% accuracy study help
  • Covers math, physics, chemistry, biology, and more
  • Step-by-step, in-depth guides
  • Readily available 24/7