How do you find f'(x) using the definition of a derivative #f(x) =x^2 - 1#?

Answer 1

#f'(x)=2x#

The definition of a derivative is: #f'(x)=lim_(hto0)(f(x+h)-f(x))/h#
Here, #f(x)=x^2-1#
#f'(x)=lim_(hto0)((x+h)^2-1-x^2+1)/h#
#f'(x)=lim_(hto0)(x^2+2xh+h^2-x^2)/h#
#f'(x)=lim_(hto0)(2xh+h^2)/h#
#f'(x)=lim_(hto0)2x+h=2x+0=2x#
#f'(x)=2x# for #f(x)=x^2-1#
Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer 2

To find ( f'(x) )To find ( f'(x) ) usingTo find ( f'(x) ) using theTo find ( f'(x) ) using the definitionTo find ( f'(x) ) using the definition ofTo find ( f'(x) ) using the definition of aTo find ( f'(x) ) using the definition of a derivativeTo find ( f'(x) ) using the definition of a derivative forTo find ( f'(x) ) using the definition of a derivative for the functionTo find ( f'(x) ) using the definition of a derivative for the function (To find ( f'(x) ) using the definition of a derivative for the function ( fTo find ( f'(x) ) using the definition of a derivative for the function ( f(xTo find ( f'(x) ) using the definition of a derivative for (To find ( f'(x) ) using the definition of a derivative for the function ( f(x)To find ( f'(x) ) using the definition of a derivative for ( fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) =To find ( f'(x) ) using the definition of a derivative for ( f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for ( f(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for ( f(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ),To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), weTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ),To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), followTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formulaTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow theseTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these stepsTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

1.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

SubTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

SubstituteTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the functionTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

2.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. SubstituteTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the functionTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) intoTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formulaTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) intoTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definitionTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

ExpandTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) andTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplifyTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

3To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) andTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplifyTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xhTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xhTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xhTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

4.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. FactorTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor outTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now,To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substituteTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) intoTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

SoTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So,To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivativeTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative ofTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

5To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

5.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. CancelTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel outTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numeratorTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator andTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) withTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2x \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0} (2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:

[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

Substitute the function ( f(x) = x^2 - 1 ) into the formula:

[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

Expand ( (x + h)^2 ) and simplify:

[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]

Now, substitute ( h = 0 ) into the expression:

[ f'(x) = 2x ]

So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2x ).To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:

  1. Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]

  2. Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]

  3. Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]

  4. Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]

  5. Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0} (2x + h) ]

  6. Evaluate the limit as ( h ) approaches 0: [ f'(x) = 2x ]

Therefore, the derivative of ( f(x) = x^2 - 1 ) is ( f'(x) = 2x ).

Sign up to view the whole answer

By signing up, you agree to our Terms of Service and Privacy Policy

Sign up with email
Answer from HIX Tutor

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.

Not the question you need?

Drag image here or click to upload

Or press Ctrl + V to paste
Answer Background
HIX Tutor
Solve ANY homework problem with a smart AI
  • 98% accuracy study help
  • Covers math, physics, chemistry, biology, and more
  • Step-by-step, in-depth guides
  • Readily available 24/7