How do you find f'(x) using the definition of a derivative #f(x) =x^2 - 1#?
By signing up, you agree to our Terms of Service and Privacy Policy
To find ( f'(x) )To find ( f'(x) ) usingTo find ( f'(x) ) using theTo find ( f'(x) ) using the definitionTo find ( f'(x) ) using the definition ofTo find ( f'(x) ) using the definition of aTo find ( f'(x) ) using the definition of a derivativeTo find ( f'(x) ) using the definition of a derivative forTo find ( f'(x) ) using the definition of a derivative for the functionTo find ( f'(x) ) using the definition of a derivative for the function (To find ( f'(x) ) using the definition of a derivative for the function ( fTo find ( f'(x) ) using the definition of a derivative for the function ( f(xTo find ( f'(x) ) using the definition of a derivative for (To find ( f'(x) ) using the definition of a derivative for the function ( f(x)To find ( f'(x) ) using the definition of a derivative for ( fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) =To find ( f'(x) ) using the definition of a derivative for ( f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for ( f(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for ( f(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ),To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), weTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ),To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), followTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formulaTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow theseTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these stepsTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
1.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
SubTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
SubstituteTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the functionTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
- Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
2.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
SubstituteTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the functionTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) intoTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formulaTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) intoTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definitionTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
ExpandTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) andTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplifyTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
3To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) andTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplifyTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xhTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 -To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xhTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh +To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 -To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \fracTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xhTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
4.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
FactorTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor outTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x +To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out (To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now,To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substituteTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( hTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) intoTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
SoTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So,To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivativeTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative ofTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of theTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
5To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
5.To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
CancelTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel outTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h )To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from theTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numeratorTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator andTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) withTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect toTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ fTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(xTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x)To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x )To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) =To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is (To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( fTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \limTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{hTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x)To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) =To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \toTo find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2xTo find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0}To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2x \To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0} (2To find ( f'(x) ) using the definition of a derivative for the function ( f(x) = x^2 - 1 ), we use the formula:
[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
Substitute the function ( f(x) = x^2 - 1 ) into the formula:
[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
Expand ( (x + h)^2 ) and simplify:
[ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ] [ f'(x) = \lim_{h \to 0} (2x + h) ]
Now, substitute ( h = 0 ) into the expression:
[ f'(x) = 2x ]
So, the derivative of the function ( f(x) = x^2 - 1 ) with respect to ( x ) is ( f'(x) = 2x ).To find ( f'(x) ) using the definition of a derivative for ( f(x) = x^2 - 1 ), follow these steps:
-
Start with the definition of the derivative: [ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} ]
-
Substitute the function ( f(x) = x^2 - 1 ) into the definition: [ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 1 - (x^2 - 1)}{h} ]
-
Expand ( (x + h)^2 ) and simplify: [ f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 1 - x^2 + 1}{h} ] [ f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} ]
-
Factor out ( h ) from the numerator: [ f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} ]
-
Cancel out ( h ) from the numerator and denominator: [ f'(x) = \lim_{h \to 0} (2x + h) ]
-
Evaluate the limit as ( h ) approaches 0: [ f'(x) = 2x ]
Therefore, the derivative of ( f(x) = x^2 - 1 ) is ( f'(x) = 2x ).
By signing up, you agree to our Terms of Service and Privacy Policy
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
When evaluating a one-sided limit, you need to be careful when a quantity is approaching zero since its sign is different depending on which way it is approaching zero from. Let us look at some examples.
- How does the derivative relate to the tangent line?
- What is the equation of the line tangent to #f(x)=x ^2cos^2(2x) # at #x=pi/4#?
- What is the equation of the normal line of #f(x)=cos(2x-pi/2)# at #x=pi/6#?
- Consider the function #f(x)=3x^3–2x# on the interval [–4, 4], how do you find the average or mean slope of the function on this interval?
- Can the instantaneous rate of change be zero?

- 98% accuracy study help
- Covers math, physics, chemistry, biology, and more
- Step-by-step, in-depth guides
- Readily available 24/7